ON NEAR-PERFECT NUMBERS WITH TWO DISTINCT PRIME FACTORS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Odd perfect numbers have at least nine distinct prime factors

An odd perfect number, N , is shown to have at least nine distinct prime factors. If 3 N then N must have at least twelve distinct prime divisors. The proof ultimately avoids previous computational results for odd perfect numbers.

متن کامل

Prime-perfect Numbers

We discuss a relative of the perfect numbers for which it is possible to prove that there are infinitely many examples. Call a natural number n prime-perfect if n and σ(n) share the same set of distinct prime divisors. For example, all even perfect numbers are prime-perfect. We show that the count Nσ(x) of prime-perfect numbers in [1, x] satisfies estimates of the form exp((log x) log log log )...

متن کامل

On Perfect and Near-perfect Numbers

We call n a near-perfect number if n is the sum of all of its proper divisors, except for one of them, which we term the redundant divisor. For example, the representation 12 = 1 + 2 + 3 + 6 shows that 12 is near-perfect with redundant divisor 4. Near-perfect numbers are thus a very special class of pseudoperfect numbers, as defined by Sierpiński. We discuss some rules for generating near-perfe...

متن کامل

Carmichael Numbers With Three Prime Factors

A Carmichael number (or absolute pseudo-prime) is a composite positive integer n such that n|an − a for every integer a. It is not difficult to prove that such an integer must be square-free, with at least 3 prime factors. Moreover if the numbers p = 6m + 1, q = 12m + 1 and r = 18m + 1 are all prime, then n = pqr will be a Carmichael number. However it is not currently known whether there are i...

متن کامل

Congruent numbers with many prime factors.

Mohammed Ben Alhocain, in an Arab manuscript of the 10th century, stated that the principal object of the theory of rational right triangles is to find a square that when increased or diminished by a certain number, m becomes a square [Dickson LE (1971) History of the Theory of Numbers (Chelsea, New York), Vol 2, Chap 16]. In modern language, this object is to find a rational point of infinite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2013

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972713000178